Computational Bioengineering

BME 4803 | BME 6313

Team Projects

Leukemia Project: Determine the best model to predict which AML patients will have Complete Remission or will be Primary Resistant.

Fitness Project: Determine the best model to predict rapid eye movement duration as a fraction of overall sleep duration for volunteers.

Your choice: Covid Project, Senior Design Confirm this week

Team Presentations & Projects

Organization

- 1. Abstract
- 2. Introduction & Rationale
- 3. Methodology & its Justification
- 4. Results
- 5. Discussion & Conclusions
- 5 page report, appendix for code
- At least 4 impactful figures and/or tables

Peer weighting scales grade

Team Presentations & Projects

Scoring Criteria

- 1. Organization
- 2. Clarity
- 3. Methodology & its Justification
- 4. Conclusions
- 5. Impact
- 6. Creativity

Peer weighting scales grade

5 page report, appendix for code

At least 4 impactful figures and/or tables

Preprocessing of Data Prior to Modeling

Test vs. Training

- 2/3rd for training
- 1/3rd for scoring (done for you, for AML challenge)
- Randomized data tests

Initial Analyses | Preprocessing of Data

- Clustering
- PCA
- Correlation across all variables
- Normalization
- Any weighting for biological knowledge

Scoring Model Predictions Binary predictions

Balanced Accuracy

$$BAC = \frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right)$$

TP	# correct CR predictions
Р	# actual CR patients
TN	# correct PR predictions
Ν	# actual PR patients

CR Confidence	Prediction
≥ 0.5	CR
< 0.5	PR

Area Under the ROC Curve

True and False Positive rates are functions of k

CR Confidence	Prediction
$\geq k$	CR
< <i>k</i>	PR

Scoring Model Predictions Time-dependency

Pearson Correlation Coeff.

$$PCC = \frac{\sum_{i=1}^{n} (p_i - \bar{p})(a_i - \bar{a})}{\sqrt{\sum_{i=1}^{n} (p_i - \bar{p})^2} \sqrt{\sum_{i=1}^{n} (a_i - \bar{a})^2}} \qquad CI = \frac{\sum_{i < j} h(i, j)}{\frac{n(n-1)}{2} - \#censored\ pairs}$$

$$CI = \frac{\sum_{i < j} h(i, j)}{\frac{n(n-1)}{2} - \#censored\ pairs}$$

p_i	Predicted duration for patient i
a_i	Actual duration for patient i
p	Mean predicted duration
\overline{a}	Mean actual duration

$$h(i,j) = \begin{cases} 1 & if (i,j) \text{ not censored, } a_i > a_j, \text{ and } p_i > p_j \\ 1 & if (i,j) \text{ not censored, } a_i = a_j, \text{ and } p_i = p_j \\ 1 & if (i,j) \text{ not censored, } a_i < a_j, \text{ and } p_i < p_j \\ 0 & \text{otherwise} \end{cases}$$